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Quantitative EEG and swLORETA Analyses 

PATIENT INFORMATION RECORDING 

Name:  Andre Albertini Date: 01/19/2021 
Exam#: EEG300 Ref. By: Self 
Age: 31 Test Site: Chicago 
Gender: Male Duration: ~10 min.  
Handedness: Right Ave. SH Reliability: 0.99 
Condition: Eyes-Closed Ave. TRT Reliability: 0.95 

 
MEDICATION:  Sertraline 125 mg, Valacyclovir 500 mg, N-Acetyl Cysteine 600 mg. 
 
Mr. Albertini meets the criteria for the following ICD-10 and DSM-5 diagnoses:  

• G93.3 Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS; Postviral fatigue 
syndrome) 

• G93.9 Non-traumatic Disease of the Brain (Encephalopathy), ME/CFS, Epstein-Barr and HHV-
6 viral infection 

• G90.9 Dysautonomia 
• M79.7 Fibromyalgia  

 
HISTORY: Mr. Albertini became ill with severe flu-like symptoms typical of ME/CFS in early 2018 
on a return flight from Puerto Rico. Since that time, he has experienced chronic energy depletion and 
exhaustion, accompanied by cognitive deficits to attention (difficulties with concentration, inability to 
stay focused), language function (reading comprehension, word finding, autonomic dysfunction 
(orthostatic intolerance, urinary frequency, headaches, dyspnea), and diffuse chronic muscle/joint pain. 
His symptoms vary unpredictably day-by-day (even within the same day), with daily fluctuations in 
intensity, duration, and severity (moderate to severe/very severe levels). As a result of post-exertional 
malaise, he is unable to perform physical and cognitive demands on a predictable, reliable, and 
consistent basis. His initial baseline qEEG scan administered at the NCRI on 11/22/2019 showed 
significant bilateral dysregulation in the frontal lobes. This finding was later verified in his SPECT/CT 
scan (09/10/2020) showing regional mild diminished perfusion involving the frontal lobes bilaterally. A 
2-day cardiopulmonary exercise test revealed the following: 1) VO2 peak is 33-42% lower than normal 
for his age/sex, 2) low ventilatory/anaerobic threshold classifies him with mild to moderate impairment, 
3) low ventilatory limitation consistent with muscle fatigue and/or lung/airway obstruction or restriction, 
4) slow heart rate recovering following exercise, 5) dysautonomia indicated by abnormal blood pressure 
and ventilatory responses during exercise, 6) post-exertional malaise and exercise intolerance indicated 
by abnormal responses to exertion. The clinical findings presented in this report are based on his recent 
baseline qEEG recording.   
 
SUMMARY: The qEEG analyses were deviant from normal and showed dysregulation in the left 
frontal lobe, and the left temporal lobe. The frontal lobes are involved in executive functioning, abstract 
thinking, expressive language, sequential planning, mood control, and social skills. The temporal lobes 
are involved in auditory processing, short-term memory, receptive language on the left and face 
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recognition on the right. swLORETA 3-dimensional source analyses were consistent with the surface 
EEG and white-matter based on connectivity results. Elevated current sources were present in the left 
orbital gyrus and left superior and middle temporal pole. The temporal pole is a heterogeneous region 
implicated in different cognitive functions such as emotion, attention, behavior, and declarative memory. 
It is also involved in higher-order cognitive processes such as language function. His complaints of 
executive dysfunction are evidenced by significant dysregulation present in these regions. Additionally, 
swLORETA connectivity analyses revealed a highly significant reduction in global connectivity with a 
widespread and substantial reduction in information flow involving networks that govern cognitive, 
affective, sensorimotor, vestibular, and autonomic functions. These qEEG findings are consistent with 
Mr. Albertini’s marked or extreme limitations and impairments; together with his medical records and 
clinical history, findings provide clear, objective, and overwhelming evidence of severe disability due to 
ME/CFS.  
 
 
Mark Zinn, Ph.D. 
 
 
 
DETAILED NARRATIVE 
 
RAW EEG. The raw EEG contained four potential myoclonic absence seizure events in brief duration 
(~1.5 seconds) with appearance of EMG artifact consistent with tonic neuromuscular contractions. 
 
SPECTRAL POWER: The Linked Ears power spectral analyses were deviant from normal with 
excessive power in the left frontal region over a wide frequency range.  Excessive power was also 
present in the left temporal region from 4 - 6 Hz and 8 Hz. 
 
SURFACE CONNECTIVITY: EEG amplitude asymmetry, coherence and EEG phase were deviant 
from normal, especially in frontal, temporal, parietal and occipital relations.  Elevated coherence was 
present in frontal, temporal, parietal and occipital regions which indicates reduced functional 
differentiation.  Reduced coherence was present in frontal region which indicates reduced functional 
connectivity.  Both conditions are often related to reduced speed and efficiency of information 
processing. 
 
swLORETA NEUROIMAGING: swLORETA 3-D source analyses were consistent with the surface 
EEG and showed significantly elevated current density in the left orbital frontal gyrus (BA 11) of the 
prefrontal cortex and the left superior and middle temporal pole with a maximum at 5 Hz (BAs 36, 38). 
Other regions that were significantly elevated included the bi-lateral amygdala (BA 25), anterior insula, 
left hippocampus, and cerebellum areas IX and X. 
 
swLORETA FUNCTIONAL CONNECTIVITY: Functional connectivity findings revealed 
widespread and significantly reduced information flow between regions of brain networks which play a 
vital role in neurocognitive (default-mode network, executive network, salience network, dorsal/ventral 
attention networks).  

The salience network (SN) filters and directs our perception of external and internal relevant 
stimuli, representative sensations related to internal organ function and autonomic activity. It is closely 
related to the pain network (PN) which processes visceral sensation and sensory discriminatory 
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components of pain. Disruption to these networks may result in lower pain threshold and diffuse 
regional pain processing. 

Attention can be thought of as the allocation of the brain’s processing resources to task-related 
stimuli, which is controlled by changes in the brain's state of arousal. The default-mode network (DMN) 
processes inward attention to self-related mental activity and experiential events and is anti-correlated 
with the executive network (EN) to shift attentional focus toward external stimuli which allows 
flexibility of responses in accordance with changing task demands. The dorsal attention network (DAN) 
is engaged during externally directed attentional tasks, whereas the ventral attention network (VAN) 
responds when behaviorally relevant stimuli are detected which are initially outside the focus of 
attention and are initially unattended to. The ventral attention network redirects the DAN toward 
behaviorally relevant stimuli. DAN and VAN together help to initiate state changes in arousal and 
allocation of task-related stimuli needed for sustained concentration and multi-tasking.  
  Mr. Albertini also suffers from post-exertional malaise (PEM), which is a cardinal feature of 
ME/CFS characterized by rapid and severe mental or physical fatigue from exposure to even minimal 
activity—the prolonged recovery period may last for days or weeks at a time. Examples of PEM-
induced by cognitive exertion include just reading a few pages from a book or just trying to follow a 
conversation. Consistent with severe PEM, functional connectivity findings revealed significant 
dysregulation in his central autonomic network (CAN), a set of cortical regions which include the 
anterior, middle, and posterior insula, amygdala, medial frontal gyrus, anterior and posterior cingulate 
cortex, hippocampus, orbital frontal gyrus. Subcortical areas include the thalamus, and cerebellum. 
Together these regions coordinate top-down maintenance of peripheral ANS outflow (parasympathetic, 
sympathetic, and enteric branches of the ANS) to ensure survival and adaptive flexibility to momentary 
challenges. CAN dysregulation is related to homeostatic instability with neurological consequences that 
manifest wide-ranging symptoms reported by Mr. Albertini, including but not limited to the following: 
orthostatic intolerance, unstable regulation of body temperature, headaches, neckaches, cardiac 
irregularities (heart palpitations and tachycardia), sensory hypersensitivities (light, sound, taste, touch, 
and smell), GI motility problems, excessive sweating, and a host of other autonomic symptoms.  

Mr. Albertini also contends with severe dizziness and nausea, balance problems, and muscle 
weakness on a daily basis. Significant reductions to information flow were found in his ataxia network, 
which is involved in motor sequencing, coordination, vestibular balance, and precise movement control. 
It includes the cerebellum which is linked to the vestibular system for coordinating movement and 
balance. It also plays a vital role in cortical sensorimotor/spatial processing of the parietal lobe, memory 
and auditory functions of the temporal lobe, and visual/spatial processing of the occipital lobe. 
Additionally, recent findings demonstrate lateral cerebellar involvement in coordinating cognitive 
executive functions (e.g., attention and default-mode networks). 

Significant reductions in information flow were present in Mr. Albertini’s mood network and 
anxiety network. This is consistent with neurological sequelae that impact limbic function. Disease of 
the CNS typically interferes with brain mechanisms that underlie emotion. The widespread 
dysregulation found in in this evaluation combined with his clinical history of neurotropic viral 
infection, CPET evaluation, SPECT results, and other testing results on record clearly and 
overwhelmingly evidences the physiological basis for his severe limitations and disability. 

DTI Findings. swLORETA connectivity results were mapped onto white-matter fiber tracts 
modeled from diffusion tensor imaging (DTI), which is an MRI technique used to measure the diffusion 
of water molecules. Significantly reduced information flow was present in crossing fibers of the corpus 
callosum which is the largest white-matter bundle in the brain and it is responsible for interhemispheric 
information flow between cortical and subcortical regions of each hemisphere. Other fiber tracts that 
were significantly affected include the left superior longitudinal fasciculus (SLF) and left arcuate 
fasciculus tracts. The SLF is an extensive white-matter tract that connects to nearly all cortical areas of 
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each hemisphere and it is involved in working memory and executive functions. The left arcuate 
connects Broca’s area to Wernicke’s area and it plays a key role in language processing. 

Frequency Bands. Location of abnormality is primarily important for understanding 
neurological symptoms, but the frequency band provides an added layer of information. Mr. Albertini’s 
abnormalities were found in the delta and theta frequency bands. Delta rhythms (1-3 Hz) are slow 
oscillations that are produced by cortico-cortical and cortico-thalamic networks involved in basic 
homeostatic processing, restorative sleep, salience recognition, and language. Slowing of EEG 
background activity is consistent with neuroinflammatory conditions and neurotropic virus infections. 
Abnormal delta activity has also been implicated in studies of Alzheimer’s disease and may demonstrate 
a link between brain states, arousal, and efficiency, with decrements in information processing speed, 
which is typically found in patients with ME/CFS. Theta rhythms (4 – 7 Hz) originate in the thalamus 
and associated with arousal, affective states originating from synchronized neurons (pacemakers) in the 
limbic system, including the cingulate gyrus and the parahippocampal cortex. It is considered important 
for a variety of cognitive functions including memory consolidation, spatial navigation, working 
memory and memory encoding/retrieval. Together, findings of this evaluation point to signs of slowing 
of EEG background activity that is consistent with neuroinflammatory conditions. 
 

Raw EEG and Spectral Analyses 

Baseline Linked Ears EEG and Absolute Power – Eyes Closed Condition 
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swLORETA Electrical Neuroimaging 
Linking a patient's symptoms and complaints to functional systems in the brain is important in 

evaluating the health and efficiency of cognitive and perceptual functions.  The electrical rhythms in the 
EEG arise from many sources but approximately 50% of the power arises directly beneath each 
recording electrode.  Standardized-weighted low-resolution electromagnetic tomography (swLORETA) 
is an advanced electrical neuroimaging tool which uses a mathematical method called an "inverse 
solution" to accurately estimate the originating sources of the surface EEG (Pascual-Marqui et al, 1994; 
Pascual-Marqui, 1999; Soler et al., 2007). swLORETA allows one to examine of deeper brain structures 
(e.g. cerebellum) with similar spatial localization characteristics and co-registration of other 
neuroimaging modalities (e.g. fMRI) (Bougariou et al., 2015). Where fMRI measures blood flow, EEG 
measures direct neuronal activity, adding high temporal resolution for detecting millisecond changes in 
the electrical sources in the brain that are associated with changes in blood flow. Below is a Brodmann 
map of anatomical brain regions that lie near to each 10/20 scalp electrode with associated functions as 
evidenced by fMRI, EEG/MEG and PET neuroimaging methods. 
 
 

 
 
A healthy brain will show very few, if any, significant connections at 
baseline which are deviant from the normal. Z-score color scale has 
range of ± 3 standard deviations.  
 
Z-scores are based on normalized distribution with a mean of 0 and 
standard deviation of 1. Z-scores greater than 1.96 are above the 
95th percentile at 2 standard deviations. Significance at the .05 level, 
means, hypothetically, if an analysis were performed an infinite 
number of times in the same person, the same results would happen 
at least 95% of the time.  
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swLORETA Source Localization 

 

 
Maximal theta activity at 5 Hz present in the left middle temporal pole area (BA 38, max. 
z-score = 2.64) significant above 2 standard deviations. Other significantly elevated regions were found 
to include the left orbital frontal gyrus (BA 11) of the prefrontal cortex, the bi-lateral amygdala (BA 25), 
anterior insula, left hippocampus, and cerebellum areas IX and X. 
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Z Scored swLORETA Connectivity Analysis 
 

Brain networks are multifunctional and no cortical region supports only one, specific, isolated 
cognitive process such as attention. Topological changes in connectivity within the network can serve as 
indicators for adaptations to disease processes and provide a marker for symptoms. Thus, linking a 
patient's symptoms and complaints to functional connectivity in the brain is important in evaluating the 
health and cognitive behavioral functions. Especially important for these functions is understanding the 
momentary changes in the network that are adaptively reconfigured in response to task demands.  

This assessment of network connectivity is based on the phase-slope index (Pascual-Marqui et 
al., 2011) a measure of the magnitude of information flow occurring between two given brain regions 
(nodes). Cyan-blue color lines (edges) indicate regions that are significantly hypo-connected (reduced 
information flow) whereas yellow-red color lines indicate significantly hyper-connected (increased 
information flow). Significant deviances from normal in either positive or negative direction indicate 
abnormal connectivity occurring between different nodes within the networks of the brain. The purple 
dots are nodes which represent different Brodmann areas. Greater disability is expected to the extent 
there is significantly higher or lower deviation from normal electrical connectivity patterns within and 
across these networks.  
 

Example of a neuro-typical individual (healthy person) 
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Global Brain Connectivity – Top view 

 

 

In the delta band (1-3 Hz), the above connectivity map and connectome diagram with 88 Brodmann 
areas shows a significant mixture of hyper and hypoconnectivity at baseline for all large-scale brain 
networks. Blue lines indicate an overall significantly reduced amount of information flow on a 
widespread spatial scale. Yellow-red lines indicate compensatory connections. 
 
Left Side Back 
  

In the delta band, hyperconnectivity (compensatory activity) is present between bi-lateral areas of the 
parietal lobe and both hemispheres of the cerebellar vermis region. This region receives 
somatosensory input from ascending spinal pathways and descending pathways from primary motor 
cortex. 
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DTI Fiber Tracts – Top 
  

In Delta 1-3 Hz in the axial model above, fiber tracts are based on values from the connectome figure with 88 
Brodmann areas. Both figures show a generalized significant reduction of information flow (blue color) in the 
U-shaped crossing fibers of the corpus callosum tract are indicated with ovals. This indicates a widespread 
substantial reduction in cross-hemispheric communication.  
 
Left Back 
  

In Delta 1-3 Hz, the left sagittal view illustrates reduced information flow in the U-shaped corpus collosum 
(circle), and left cerebellar hemisphere (circle). Back view also shows reduced information flow in the U-
shaped corpus collosum tract and the left cerebellar hemisphere (circle). 
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Global Brain Connectivity – Top 

 

 

In Theta 4-7 Hz, the above connectivity model and connectome map with 88 Brodmann areas shows 
significantly reduced information flow mainly in the left hemisphere, crossing over to certain nodes in 
the right hemisphere. 
 
Left Back 
  

In Theta 4-7 Hz, substantially reduced magnitude of information flow is present between many nodes 
of the left frontal/temporal/parietal lobes and nodes of both cerebellar hemispheres which are 
responsible for motor, attentional, and default-mode processing. 
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DTI Fiber Tracts – Top 
  

In Theta 4-7 Hz, the above fiber tracts are based on values from the connectome figure with 88 Brodmann 
areas. The figures above show a left-lateralized reduction in information flow (blue color) in the left superior 
longitudinal fasciculus and left arcuate fasciculus tracts (indicated with black square), and in the U-shaped 
crossing fibers of the corpus callosum tract (indicated with circle). This indicates an overall and significantly 
reduced cross-hemispheric communication. 
 
Left Left with superimposed source analysis results 
  

In Theta 4-7 Hz, the left side view illustrates 
significant abnormality in the U-shaped uncinate 
fasciculus (circle), superior longitudinal fasciculus, 
arcuate fasciculus, inferior fronto-occipital 
fasciculus, and cingulum (oval). 

The above figure shows significantly reduced fiber tracts 
of the left figure, superimposed onto 3-D source analysis 
Theta results (see p. 9), shown here in light red-orange 
color. This concordance of both findings is highly 
consistent and it includes the left cingulum. 
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EXECUTIVE NETWORK 

  
Delta 1-3 Hz. Reduced information is present in the executive network, which is involved in goal-
directed attention, working memory, and performance monitoring during situations that call for 
planning, problem solving, and decision making.  

 
 

PAIN NETWORK 

 

 

Delta 1-3 Hz. Highly significant reduction to information flow (dark blue) is shown here in the 
somatosensory nodes of the pain network for visceral sensation and sensory discrimination of pain 
processing. Disruption is related to widespread chronic muscle/joint pain and fibromyalgia symptoms.  
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DEFAULT-MODE NETWORK 

  

Delta (1-3 Hz). Reduced information flow present in nodes of the DMN. This network is engaged 
during self-referential cognitive activity and suppression of this network is needed when engaging 
external attention for environmental tasks. Dysregulation of this network results in episodic memory 
deficits and task-switching. 
 
SALIENCE NETWORK 

  
Delta 1-3 Hz. Reduced information flow present between the bi-lateral posterior insula and salience 
recognition association regions of the frontal lobe. Increased information flow is present between the 
bi-lateral posterior cingulate and the left insula and anterior cingulate (compensatory response). The 
SN directs our attention to external and internal relevant stimuli, including autonomic and emotional 
challenge. The insula (circles) is a key region for integrating and filters incoming sensory stimuli, 
interoceptive awareness, and reward information. Dysregulation of this network may result  in 
aberrant control of attention and working memory resources and hypersensitive perception of light, 
noise, smell, and touch. 
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CENTRAL AUTONOMIC NETWORK 

 

 

Delta 1-3 Hz. The CAN is involved in top-down control and maintenance of the peripheral autonomic 
nervous system (ANS) outflow to target organs. Dysregulation shown here explains wide ranging 
symptoms and rapid fluctuations in symptoms which include severe fatigue and stamina loss, cold 
extremities, fluctuating body temperature, nausea, dizziness, headache, neckache, cardiac 
irregularities and palpitations, visual acuity problems, hypersensitivity to light, noise, smell, touch. 
 
ATAXIA NETWORK 

 

 
Delta 1-3 Hz. Reduced information flow is present across each cerebellar hemisphere (oval). Ataxia is 
a primary symptom of cerebellar dysfunction. Connections from the cerebellum mainly convey 
information to the cerebral motor cortices. However, reduced information is present in the primary 
motor cortex (square).  
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DORSAL ATTENTION NETWORK 

  
Delta 1-3 Hz. Significantly reduced information flow is present between most regions of the DAN. This 
network is engaged during externally directed attentional tasks.  
 
VENTRAL ATTENTION NETWORK 

 
 

Delta 1-3 Hz. Significantly reduced information flow is present between nearly all regions of the VAN. This 
network responds when behaviorally relevant stimuli are detected which are initially outside the focus of 
attention and are initially unattended to. It also redirects the DAN toward behaviorally relevant stimuli. 
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MOOD NETWORK 
  

The depression network is involved in mood maintenance. It includes the habenula which is involved in 
nociception, sleep-wake cycles, reproductive behavior. It is known to influence virtually all monoaminergic 
systems in the brainstem, such as dopamine, norepinephrine, and serotonin.  
 
ANXIETY NETWORK 
  

The anxiety network regulates fear responses. It involves the amygdala which sends projections to the 
hypothalamic-pituitary-adrenal axis and locus coeruleus for mediating stress hormones of the neuroendocrine 
system.  
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This record supports the following the following reliability estimates: 
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Appendix 

Important Disclaimer: 

QEEG tests are ancillary tests similar to blood tests, that are not intended to provide a diagnosis by themselves, 
but are used to evaluate the nature and severity of dysregulation in the brain such as in ME/CFS or in any 
of the other 600+ neurological disorders.  The QEEG tests provide a quantitative assessment of regions of brain 
dysfunction and information regarding impaired conduction and connectivity between different regional neural 
networks in the brain. The assessment of impaired connectivity is based on abnormal measurements of Coherence 
and Phase. The diagnosis of MTBI is a clinical one and is not based on any one test. A diagnosis is performed by 
the clinician, who integrates the medical history, clinical symptoms, neurocognitive tests with the above-
mentioned brain function tests as well as other information to render a diagnosis.  The information on impaired 
brain connectivity is derived primarily from abnormal measurements of Coherence and Phase. Assessments of 
regional abnormality rely also on abnormal amplitude (power) distribution across the spectrum of EEG 
frequencies as compared to norms. 

Artifact Rejection: 

NeuroGuide uses the standard deletion of artifact method to only select artifact free EEG data for analyses. View 
the Test Re-Test reliability which must be at least 0.90 NeuroGuide does not use any regression methods to 
allegedly remove artifact such as ICA/PCA or Blind Source or unpublished methods like SARA that distort 
Phase and Coherence, thus invaliding the results.  Details and tutorials demonstrating how the ICA and 
regression methods distort Phase and Coherence are available at: 
https://www.appliedneuroscience.com/PDFs/Tutorial_Adulteration_Phase_Relations_when_using_ICA.pdf. 

Split Half and Test Re-Test Reliability: 

Split-Half (SH) reliability is the ratio of variance between the even and odd seconds of the time series of selected 
digital EEG (variance = sum of the square of the deviation of each timepoint from the mean of the time points).   
Test Re-Test reliability is an excellent statistic to compare. Brain state changes such as drowsiness as well as the 
consistency of a measure independent of changes in brain state. 

Description of the NeuroGuide Normative Database: 

The NeuroGuide normative database in versions 1.0 to 2.4.6 included a total of 678 carefully screened individual 
subjects ranging in age from 2 months to 82 years.  NG 2.6.8 involved the addition of 49 adult subjects ranging in 
age from 18.3 years to 72.6 years resulting in a normative database of 727 subjects.  The inclusion/exclusion 
criteria, demographics, neuropsychological tests, Gaussian distribution tests and cross- validation tests are 
described in several peer reviewed publications (Thatcher et al, 1983; 1987; 2003).  Two year means were 
computed using a sliding average with 6 month overlap of subjects.  This produced a stable and higher age 
resolution normative database with a total of 21 different age groups.  The 21 age groups and age ranges and 
number of subjects per age group is shown in the bar graph in Appendix F figure 2 in the NeuroGuide Manual 
(click Help > NeuroGuide Help). 

The individuals used to create the normative database met specific clinical standards of no history of neurological 
disorders, no history of behavioral disorders, performed at grade level in school, etc. Most of the subjects in the 
normative database were given extensive neuropsychological tests. Details of the normative database are 
published at: Thatcher, R.W., Walker, R.A. and Guidice, S. Human cerebral hemispheres develop at different 
rates and ages. Science, 236: 1110-1113, 1987 and Thatcher R.W., Biver, C.L., North, D., Curtin, R. and Walker, 
R.W. Quantitative EEG Normative Databases: Validation and Clinical Correlation. Journal of Neurotherapy, 
2003, 7(3-4): 87-121. You can download a description of the normative database by going to 
https://appliedneuroscience.com/scientific-articles/ and clicking on Article #5. 

 

https://appliedneuroscience.com/scientific-articles/
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Is there a normative database for different montages including bipolar montages? 

Yes.  The raw digital data from the same group of normal subjects is analyzed using different montages such as 
Average Reference, Laplacian current source density, a common reference based on all 19 channels of the 10/20 
system and standard clinical bipolar montages (e.g., longitudinal, circular, transverse). Users can create any 
montage that they wish and there will be a normative reference database comparison available for both eyes 
closed and eyes open conditions. 

Age range of the swLORETA Current Density and Source Correlation Normative Databases 

The swLORETA current density and source correlation norms use the same subjects as are used for the surface 
EEG norms and the age range is 2 months to 82 years. The computational details of the LORETA current density 
norms are published at: Thatcher, R.W., North, D., Biver, C. EEG inverse solutions and parametric vs. non-
parametric statistics of Low Resolution Electromagnetic Tomography (LORETA). Clin. EEG and Neuroscience, 
36(1): 1-9, 2005 and Thatcher, R.W., North, D., Biver, C. Evaluation and Validity of a LORETA normative EEG 
database. Clin. EEG and Neuroscience, 2005, 36(2): 116-122. Copies of these publications are available to 
download from https://appliedneuroscience.com/scientific-articles/ by clicking on article nos. 11 and 12.   

Amplifier Matching is Necessary 

This stems from the fact that amplifiers have different frequency gain characteristics.  The matching of amplifiers 
to the NeuroGuide database amplifier was done by injecting microvolt calibration signals of different amplitudes 
and frequencies into the input of the respective EEG machines and then computing correction curves to exactly 
match the amplifier characteristics of the norms and discriminant functions. The units of comparison are in 
microvolts and a match within 3% is generally achieved.  The NeuroGuide research team double checked the 
amplifier match by computing FFT and digital spectral analyses on calibration signals used to acquire the norms 
with the calibration signals used to evaluate a given manufacturers amplifiers. 

History of the Scientific Standards of QEEG Normative Databases 

A review of the history of QEEG normative databases was published in Thatcher, R.W. and Lubar, J.F. History of 
the scientific standards of QEEG normative databases.  In: Introduction to QEEG and Neurofeedback: Advanced 
Theory and Applications, T. Budzinsky, H. Budzinsky, J. Evans and A. Abarbanel (eds)., Academic Press, San 
Diego, CA, 2008.  A copy of the publication can be downloaded at: 
https://www.appliedneuroscience.com/PDFs/History_of_QEEG_Databases.pdf. 
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